

Reg. No. :					AUTE ME
------------	--	--	--	--	---------

Question Paper Code: 41316

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2018 Fourth/Fifth/Sixth/Seventh Semester Civil Engineering MA 6459 – NUMERICAL METHODS

(Common to Aeronautical Engineering/Agriculture Engineering/Electrical and Electronics Engineering/Electronics and Instrumentation Engineering/Geoinformatics Engineering/Instrumentation and Control Engineering/Manufacturing Engineering/Mechanical and Automation Engineering/Petrochemical Engineering/Production Engineering/Chemical Engineering/Chemical Engineering/Chemical Engineering/Handloom and Textile Technology/Petrochemical Technology/Plastic Technology/Polymer Technology/Textile
Chemistry/Textile Technology)

(Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. What is the condition for convergence and the order of convergence of Newton Raphson method?
- 2. Why Gauss-Seidel method is better than Gauss-Jordan method?
- 3. When to use Newton's forward interpolation and when to use Newton's backward interpolation formula?
- 4. Find the first and second divided differences with arguments a, b, c of the function $f(x) = \frac{1}{x}.$
- 5. Write the formula for y'(x) and y''(x) using Newton's backward differences.
- 6. Evaluate $\int_{-1}^{1} \frac{dx}{1+x^2}$ by two point Gaussian formula.
- 7. What are multi-step methods? How are they better than single step method?

- 8. State the formula for Adams-Bashforth Predictor and Corrector method.
- 9. What is the error for solving Laplace and Poisson's equation by finite difference method?
- 10. Write the Crank-Nicolson formula to solve parabolic equation.

 $(5\times16=80 \text{ Marks})$

Find, by power method, the largest eigen value and the corresponding eigen vector

of a matrix
$$A = \begin{pmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{pmatrix}$$
 with initial vector $(1 \ 1 \ 1)^T$. (8)

ii) Solve, by Gauss – Seidal method, the system of equations.
$$20x + y - 2z = 17, 3x + 20y - z = -18, 2x - 3y + 20z = 25$$
 (OR)

b) Consider the system of equations of the form AX = B, where A =
$$\begin{pmatrix} 4 & 1 & 2 \\ 2 & 3 & -1 \\ 1 & -2 & 2 \end{pmatrix}$$

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 and $B = \begin{pmatrix} 7 \\ -3 \\ 7 \end{pmatrix}$. Find by using Gauss-Jordan method, i) A^{-1} and

ii) the numerical solution of the given system. (8+8)

12. a) i) Use Lagrange's interpolation formula to fit a polynomial to the given data

$$f(-1) = -8$$
, $f(0) = 3$, $f(2) = 1$ and $f(3) = 2$. Hence find the value of $f(1)$. (8)

ii) Find the value of tan 45° 15' by using Newton's forward difference interpolation formula for

$$\mathbf{x}^{\circ}$$
: 45 46 47 48 49 50
 $\mathbf{tan} \ \mathbf{x}^{\circ}$: 1.00000 1.03553 1.07237 1.11061 1.15037 1.19175 (8)
(OR)

b) Fit the cubic spline for the data: (16)

$$\mathbf{x}$$
: 0 1 2 3 $\mathbf{f}(\mathbf{x})$: 1 2 33 244

- 13. a) i) From the following table of values of x and y, obtain y'(x) for x = 16x: 15 17 19 21 23 25

 y: 3.873 4.123 4.359 4.583 4.796 5
 - ii) Using Romberg's method, evaluate $\int_{0}^{1} \frac{dx}{1+x}$ with step size 0.5, 0.25 and 0.125 correct to three decimal places. (10)

(OR)

- b) i) Find the first derivative of f(x) at x = 2 for the data f(-1) = -21, f(1) = 15, f(2) = 12 and f(3) = 3, using Newton's divided difference formula. (8)
 - ii) Evaluate $\int_{2}^{2.6} \left[\int_{4}^{4.4} \frac{1}{xy} dx \right] dy$ by Simpson's one-third rule with h = 0.2 and k = 0.3. (8)
- 14. a) i) Find the values of y at x = 0.1 given that $\frac{dy}{dx} = x^2 y$, y(0) = 1 by modified Euler's method. (8)
 - ii) Find the value of y at x = 0.1, given that $\frac{dy}{dx} = x^2 y$, y(0) = 1 by Taylor's series method. (8)

(OR)

- b) Given $\frac{dy}{dx} = xy + y^2$, y(0) = 1, y(0.1) = 1.1169 and y(0.2) = 1.2774, find i) y(0.3) by Runge-Kutta method of fourth order and ii) y(0.4) by Milne's method. (16)
- 15. a) i) Solve the boundary value problem y'' = xy subject to the conditions y(0) + y'(0) = 1, y(1) = 1, taking $h = \frac{1}{3}$, by finite difference method. (8)
 - ii) Solve $\frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} = \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}$, $0 < \mathbf{x} < 1$, t > 0 given $\mathbf{u}(\mathbf{x}, 0) = 0$, $\frac{\partial \mathbf{u}}{\partial \mathbf{t}}(\mathbf{x}, 0) = 0$, $\mathbf{u}(0, t) = 0$ and $\mathbf{u}(1, t) = 100 \sin \pi t$. Compute $\mathbf{u}(\mathbf{x}, t)$ for four times steps with $\mathbf{h} = 0.25$. (8)
 - b) Solve the Laplace equation over the square mesh of side 4 units, satisfying the boundary conditions: (16)

$$u(0, y) = 0$$
, $u(4, y) = 12 + y$, $0 \le y \le 4$
 $u(x, 0) = 3x$, $u(x, 4) = x^2$, $0 < x < 4$.

OF THE STATE OF TH

13) Uning Bomberg's assthed, systems | 100 miles asset a, 0, 25 and 6 LMb entres to three descriptions | 1 + 5 miles are to three descriptions | (

201

(a) J. Ford the flow derivative of t(x) at x = 2 for the data ff. (b) = -21. (c) = 10.
 (b) J. Ford the flow derivative of t(x) at x = 2 for the data fillerence formula.

13) Exclusive $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx$ by the Singston's one-third rule with h=0.3 and h=0.3

Let α it find the written of y of x = 0 1 given that $\frac{dy}{dx} = x^2 - y$, y(0) = 1 by modulant wavefund

1) Find the value of y at x = 0.1, given that $\frac{dy}{dx} = x^2 - y$, y(0) = 1 by Taylor's second and

ato

by Group $\frac{dy}{dz} = xy + y^2$, y(11 = x, y(2, 1)) = 1, 1000 and y(0, 2) = 1, 2714, find 0 y(0, 3) by Hubble mathematical or bounds and 33 y(0, 0) by Mathe's mathematical or form.

(i.e. a) to Solve the locations value problem $y'' = \pi y$ subject to the conditions $\varphi(y+y'(y) = 1, y(1) = 1, x(1) = 1, x(1)$

th follow $\frac{\partial^2 u}{\partial t} = \frac{\partial^2 u}{\partial t}$, 0 < x < 1, t > 0 given u(x,0) = 0, $\frac{\partial u}{\partial t}(x,0) = 0$, as h = 0 and u(x,0) = 1 for four times around with h = 0.06.

the designation operation with a section of an interpretation of an interpretation of the section of the sectio

Let $x \ge 0$, x + 2x = iy, the iy = iy and iy = iy and iy = iy and iy = iy.